

Lecture 4: Covering and fibration II

G-principal covering

Let G be a discrete group. A continuous action $G \times X \to X$ is called properly discontinuous if for any $x \in X$, there exists an open neighborhood U of x such that

$$g(U) \cap U = \emptyset, \quad \forall g \neq 1 \in G.$$

We define the orbit space

$$X/G = X/\sim$$

where $x \sim g(x)$ for any $x \in X, g \in G$.

Proposition

Assume G acts properly discontinuously on X, then the quotient map $X \to X/G$ is a covering with fiber G.

A left (right) G-principal covering is a covering $p: E \to B$ with a left (right) properly discontinuous G-action on E over B

such that the induced map $E/G \rightarrow B$ is a homeomorphism.

Example

exp: $\mathbb{R}^1 \to S^1$ is a \mathbb{Z} -principal covering for the action $n: t \to t+n, \forall n \in \mathbb{Z}$.

$\mathsf{Example}$

 $S^n o \mathbb{RP}^n \simeq S^n/\mathbb{Z}_2$ is a \mathbb{Z}_2 -principal covering.

Proposition

Let $p: E \rightarrow B$ be a G-principal covering. Then transport commutes with G-action, i.e.,

$$T_{[\gamma]}\circ g=g\circ T_{[\gamma]}, \quad \forall g\in \mathit{G}, \gamma \text{ a path in } \mathit{B}.$$

Theorem

Let $p: E \to B$ be a G-principal covering, E path connected, $e \in E, b = p(e)$. Then we have an exact sequence of groups

$$1 \to \pi_1(E, e) \to \pi_1(B, b) \to G \to 1.$$

In other words, $\pi_1(\emph{E},\emph{e})$ is a normal subgroup of $\pi_1(\emph{B},\emph{b})$ and

$$G = \pi_1(B, b)/\pi_1(E, e).$$

This can be illustrated by

 pr_1 is an isomorphism and pr_2 is an epimorphism with

$$\ker(\operatorname{pr}_2) = \mathsf{Stab}_{\mathsf{e}}(\pi_1(\mathit{B}, \mathit{b})) = \pi_1(\mathit{E}, \mathit{e}).$$

Example

Apply this Corollary to the covering $\exp\colon \mathbb{R}^1 \to S^1$, we find a group isomorphism (degree map)

$$\deg: \pi_1(S^1) \to \mathbb{Z}.$$

Example

As we will see, S^n is simply connected if n > 1. It follows that

$$\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2, \quad n > 1.$$

Applications

 $i:A\subset X$ be a subspace. A continuous map $r:X\to A$ is called a retraction if $r\circ i=1_A$. It is called a deformation retraction if furthermore we have a homotopy $i\circ r\simeq 1_X$. We say A is a (deformation) retract of X if such a (deformation) retraction exists.

Proposition

If $i:A\subset X$ is a retract, then $r_*:\pi_1(A)\to\pi_1(X)$ is injective.

Corollary

Let D^2 be the unit disk in \mathbb{R}^2 . Then its boundary S^1 is not a retract of D^2 .

Theorem (Brouwer fixed point Theorem)

Let $f: D^2 \to D^2$. Then there exists $x \in D^2$ such that f(x) = x.

Theorem (Fundamental Theorem of Algebra)

Let $f(x) = x^n + c_1 x^{n-1} + \cdots + c_n$ be a polynomial with $c_i \in \mathbb{C}$, n > 0. Then there exists $a \in \mathbb{C}$ such that f(a) = 0.

Proposition (Antipode)

Let $f: S^1 \to S^1$ be an antipode-preserving map, i.e. f(-x) = f(-x). Then $\deg(f)$ is odd. In particular, f is NOT null homotopic.

Theorem (Borsuk-Ulam)

Let $f \colon S^2 \to \mathbb{R}^2$. Then there exists $x \in S^2$ such that f(x) = f(-x).

Corollary (Ham Sandwich Theorem)

Let A_1, A_2 be two bounded regions of positive areas in \mathbb{R}^2 . Then there exists a line which cuts each A_i into half of equal areas.

Classification of coverings

The universal cover of B is a covering map $p: E \rightarrow B$ with E simply connected.

The universal cover is unique (if exists) up to homeomorphism. This follows from the lifting criterion and the unique lifting property of covering maps.

A space is semi-locally simply connected if for any $x_0 \in X$, there is a neighbourhood U_0 such that the image of the map $i_* \colon \pi_1(U_0, x_0) \to \pi_1(X, x_0)$ is trivial.

We recall the following theorem from point-set topology.

Theorem (Existence of the universal cover)

Assume B is path connected and locally path connected. Then universal cover of B exists if and only if B is semi-locally simply connected space.

We define the category Cov(B) of coverings of B where

- ▶ an object is a covering map $p: E \rightarrow B$
- ▶ a morphism between two coverings $p_1: E_1 \to B$ and $p_2: E_2 \to B$ is a map $f: E_1 \to E_2$ such that the following diagram is commutative

Definition

Let B be connected. We define $Cov_0(B) \subset Cov(B)$ to be the subcategory whose objects consist of connected coverings of B.

Proposition

Let B be connected and locally path connected. Then any morphism in ${\rm Cov}_0(B)$ is a covering map.

In other words, if B is connected and p_1, p_2 are coverings, then f is also a covering.

We define the category G-<u>Set</u> where

- ▶ an object is a set *S* with *G*-action
- ▶ morphisms are G-equivariant set maps, i.e. $f: S_1 \to S_2$ such that $f \circ g = g \circ f$, for any $g \in G$.

Given a covering $p: E \rightarrow B$, $b \in B$, the transport functor implies

$$p^{-1}(b) \in \pi_1(B,b) - \underline{\mathbf{Set}}.$$

Lemma

Let B be path connected. Then $\pi_1(B,b)$ acts transitively on $p^{-1}(b)$ if and only if E is path connected.

Proposition

Assume B is path connected and locally path connected. Let $p_1,p_2\in {\sf Cov}(B)$. Then there is a set isomorphism

$$\operatorname{Hom}_{\operatorname{\mathsf{Cov}}(B)}(p_1,p_2) \simeq \operatorname{Hom}_{\pi_1(B,b)-\operatorname{\underline{\bf Set}}}(p_1^{-1}(b),p_2^{-1}(b))$$

for any $b \in B$.

Theorem

Assume B is path connected, locally path connected and semi-locally simply connected. $b \in B$. Then there exists an equivalence of categories

$$\mathsf{Cov}(B) \simeq \pi_1(B, b) - \underline{\mathbf{Set}}.$$

The equivalence is realized by the following functors

$$\operatorname{Cov}(B) \xrightarrow{F} \pi_1 - \underline{\mathbf{Set}}.$$

▶ Let $p: E \rightarrow B$ be a covering, we define

$$F(p) := p^{-1}(b).$$

▶ Let $S \in \pi_1$ -Set, we define

$$G(S) := \widetilde{B} \times_{\pi_1} S = \widetilde{B} \times S / \sim.$$

Let B be path connected and $p: E \to B$ be a connected covering. A deck transformation (or covering transformation) of p is a homeomorphism $f: E \to E$ such that $p \circ f = p$.

Let Aut(p) denote the group of deck transformation.

Note that $\mathrm{Aut}(p)$ acts freely on E by the Uniqueness of Lifting.

Proposition

Let B be path connected and $p: E \to B$ be a connected covering. Then $\operatorname{Aut}(p)$ acts properly discontinuous on E.

Theorem

Assume *B* is path connected, locally path connected. Let $p: E \rightarrow B$ be a connected covering, $e \in E, b = p(e) \in B$

$$G = \pi_1(B, b), H = \pi_1(E, e).$$

Then

$$\operatorname{Aut}(p) \simeq N_G(H)/H$$

where

$$N_G(H)$$
: = { $r \in G \mid rHr^{-1} = H$ }

is the normalizer of H in G.

This theorem is a direct consequence of the following computation

$$\operatorname{Aut}(p) \simeq \operatorname{Hom}_{G\operatorname{\mathbf{-Set}}}(G/H,G/H) = N_G(H)/H.$$

Example

For the universal cover $p: \tilde{B} \to B$, this implies that

$$\operatorname{Aut}(\boldsymbol{p})=\pi_1(\boldsymbol{B},\boldsymbol{b}).$$

Therefore p is a $\pi_1(B, b)$ -principal covering.

We define the orbit category Orb(G)

- ightharpoonup objects consist of (left) coset G/H, where H is a subgroup of G
- ▶ morphisms are *G*-equivariant maps: $G/H_1 \rightarrow G/H_2$.

Orb(G) is a full subcategory of G-<u>Set</u> consisting of single orbits.

Remark

 G/H_1 and G/H_2 are isomorphic in $\mathrm{Orb}(G)$ if and only if H_1 and H_2 are conjugate subgroups of G.

If we restrict to connected coverings, we find an equivalence

$$Cov_0(B) \simeq Orb(\pi_1(B, b)).$$

$$\pi_1(B,b) \longrightarrow \tilde{\pi}_1(B,b)/H \iff \tilde{B} \xrightarrow{f} \tilde{B}/H$$

The universal cover $B \to B$ corresponds to the orbit $\pi_1(B,b)$. For the orbit $\pi_1(B,b)/H$, it corresponds to

$$E = \widetilde{B}/H \rightarrow B$$
.

A more intrinsic formulation is as follows. Given a covering $p: E \to B$, we obtain a transport functor

$$T_p:\Pi_1(B)\to \underline{\mathbf{Set}}$$
.

Given a commutative diagram

we find a natural transformation

$$\tau: T_{p_1} \Longrightarrow T_{p_2}, \quad \tau = \{f: p_1^{-1}(b) \to p_2^{-1}(b) | b \in B\}.$$

The above structure can be summarized by a functor

$$T: \mathsf{Cov}(B) \to \mathsf{Fun}(\Pi_1(B), \underline{\mathbf{Set}})$$
.

Theorem

Assume B is path connected, locally path connected and semi-locally simply connected. Then

$$T: \mathsf{Cov}(B) \to \mathsf{Fun}(\Pi_1(B), \underline{\mathbf{Set}})$$

is an equivalence of categories.